If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2-20t+12=0
a = 4.9; b = -20; c = +12;
Δ = b2-4ac
Δ = -202-4·4.9·12
Δ = 164.8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-\sqrt{164.8}}{2*4.9}=\frac{20-\sqrt{164.8}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+\sqrt{164.8}}{2*4.9}=\frac{20+\sqrt{164.8}}{9.8} $
| 5/2x-1/14=2/3x | | 10x^2-31x+132=0 | | 5(2x-1)=3(x+7) | | 1/3x+10=3/4x | | 3x4^(2K+8)=24 | | 3(1.8)7x+9=16.4 | | 9x-4=4x-1)-5x+4= | | 0.3x+5-3.3x=41 | | 39+8x+6=3x-87-7x | | 5/8=v+2/9 | | (12+8x)-(3x+7)=5x+8 | | 7x-50=2x+25 | | -4x-2x=2 | | 5x-+1=x-11 | | 3x-10+x=85 | | 22=m-8 | | 9(x+8)=8x | | 1.3d+5.2=-2.6 | | x^2=(-7x-2) | | 4x-4=50-x | | 25(2x-1)=8(x+2)+2x | | 5/8y-1/2=1/5 | | 3x+×=180 | | 51-y=20 | | 2x+6+80=90 | | 2(3+2x)=5x-8 | | 4x+10=8x+60 | | 3x^2+(-2)=0 | | 11^3x-5=65 | | 5x+38=-7 | | X+4x+5=80 | | 2.3q-18=1.9 |